

DECLARATION OF PERFORMANCE								
N°	0101/052 Rev. 0							
Product Identification Code	Flat product made of Stainless Steel X6CrNiTi18-10 1.4541 Cold rolled, according to EN10088-4.							
Identification	According to the information stated on the ID label with barcode and/or bundle number and in the inspection certificate.							
Intended use of the construction product	Stainless Steel Flat Product for use in the construction field.							
Manufacturer (registered office)	Marcegaglia S.p.A. Via Bresciani, 16 – 46040 Gazoldo degli Ippoliti (MN) – Italia							
Production Plant	Gazoldo Degli Ippoliti Via Bresciani, 16 – 46040 Gazoldo degli Ippoliti (MN) – Italia							
System of assessment and verification of the continuity of performance of the construction product	2+							
Name and ID number of the notified Body	RINA Services S.p.A. – Via Corsica, 12 – 16128 Genova - Italia 0474							

Certificates of Conformity for the control of the plant production have been issued for the following elements:

- Starting inspection of the production plant and of the factory production control.
- Surveillance, evaluation and regular audits of the factory production control

DECLARED PERFORMANCE

Main Features	Performance	Harmonised specification
Dimensional Tolerances	As per Table 2	EN9445-2:2009
Elongation		
Tensile strength		
Yield strength 0,2%	As per Table 1	
Impact strength		
Weldability (Chemical Analysis)	According to specification	EN10088-4
Durability (Chemical Analysis)		
Resistance to brittle fracture (see Impact		
Strength)	As per Table 1	
Cold Forming (see Elongation)		

This declaration of performance is issued under the sole responsibility of the manufacturer identified above

Signed for and on behalf of Marcegaglia S.p.A.

Arnaldo Ing. Barini

Gazoldo d.l. Plant Manager.

Gazoldo D.I. 01/07/2013

This declaration of performance is valid only in presence of the product identification label and delivery document or of the inspection certificate issued after delivery

Table 1 – Mechanical properties of Cold Rolled Austenitic Steel												
Product Grade				Thk Yield Strength		Tensile Strength		gation cture	stre	oact ngth O-V	Intergranular corrosion resistance ^(f)	
Quality	No.	Aisi	of pı	mm	$R_{p0,2}$	R _{p1,0} (b)	R_m	A ₈₀ ^(d)	$A_{80}^{(d)}$ $A^{(e)}$		V	Conditions of
			0				< 3mm T ≥ 3mm T > 10mm T				nm T.	the supply
			χ		MP	a ^(g)	MPa ^(g)	%	%	J	J	
			-	max		iin				min	min	
			(a)		Transv	ersal ^(c)				Long.	Transv.	
X6CrNi18-10	1.4541	321	С	8	220	250	520÷720	40	40	-	-	Yes

- Type of Product: C = Cold Rolled, H = Hot Rolled
- b) Value given as an indication only
- For Continuous Hot Rolled products the min. value of $R_{p0,2}$ must be increased by 20MPa and the minimum value of $R_{p1,0}$ must be c) increased by 10MPa.
- Values may apply to samples 80 mm long and 20 mm. wide, as well as 50 mm long and 12,5 mm wide Values apply to samples having $5.65\sqrt{S_0}$.
- e)
- When required, it must comply with EN ISO 3651-2 1 MPa = 1N/mm²

	Table 2 – Dimensional Tolerances EN9445-2									
	Tolerances of thickness for	Wide Strips as per me	thod A							
Thickness range	Thickness range Regular Tolerance Special Tolerances (S) for Nominal Widths W For widths ≤ 2100mm									
		W ≤ 1000	1000 < W ≤ 1300	1300 < W ≤ 2100						
≥ 0,60< 0,80	± 0,050	± 0,035	± 0,040	-						
≥ 0,80< 1,00	± 0,060	± 0,040	± 0,045	± 0,050						
≥ 1,00< 1,20	± 0,070	± 0,045	± 0,045	± 0,050						
≥ 1,20< 1,50	± 0,080	± 0,050	± 0,055	± 0,060						
≥ 1,50< 2,00	± 0,090	± 0,055	± 0,060	± 0,070						
≥ 2,00< 2,50	± 0,100	-	-	-						
≥ 2,50< 3,00	± 0,120	-	-	-						
≥ 3,00< 4,00	± 0,140	-	-	-						

Above tolerances apply to the measurement method A as per point 17.2 of EN Rule, which allows to measure anywhere within 20 mm. from the edge in case of trimmed edges, or within 30 mm from edge if left untrimmed from rolling

Nominal Width Tolerance (mm)

≤ w < 1000 -0 +25

1000 ≤ w ≤ 2100 -0 +30

	Tolerances of thickness for strips and sheets from Wide Strips										
No	mina	l thic	knoc	+	Re	gular Tolerances fo	or Width w	Special Tolerances for Width w			
NO	Nominal thickness t $w \le 1000 1000 < w \le 1300 13000 < w \le 2100 w \le 1000 1000 < w \le 2100 000 < w \le 21$							1000 < w ≤ 1300	13 000 < w ≤ 2100		
0.8	≤	t	<	1.00	±0.055	±0.060	±0.070	±0.040	±0.050	±0.050	
1.00	≤	t	<	1.20	±0.070	±0.070	±0.080	±0.050	±0.055	±0.060	
1.20	≤	t	<	1.50	±0.080	±0.080	±0.100	±0.055	±0.060	±0.060	
1.50	≤	t	<	2.00	±0.080	±0.090	±0.110	±0.065	±0.070	±0.080	
2.00	≤	t	<	2.50	±0.090	±0.110	±0.130	-	-	-	
2.50	≤	t	<	3.00	±0.110	±0.130	±0.150	-	-	-	
3.00	≤	t	<	4.00	0.140	±0.150	±0.160	-	-	-	

	Tolerances of width for strips and sheets from Wide Strips											
Nominal thickness t Regular Tolerances for Width w								Special Tolerances for Width w				
NO	IIIIIIIa	ıı uııc	KIIES	35 ι	w≤125	125 <w≤250< th=""><th>250<w≤600< th=""><th>600<w≤1000< th=""><th>1000<w≤2100< th=""><th>w≤125</th><th>125<w≤250< th=""><th>250<w≤600< th=""></w≤600<></th></w≤250<></th></w≤2100<></th></w≤1000<></th></w≤600<></th></w≤250<>	250 <w≤600< th=""><th>600<w≤1000< th=""><th>1000<w≤2100< th=""><th>w≤125</th><th>125<w≤250< th=""><th>250<w≤600< th=""></w≤600<></th></w≤250<></th></w≤2100<></th></w≤1000<></th></w≤600<>	600 <w≤1000< th=""><th>1000<w≤2100< th=""><th>w≤125</th><th>125<w≤250< th=""><th>250<w≤600< th=""></w≤600<></th></w≤250<></th></w≤2100<></th></w≤1000<>	1000 <w≤2100< th=""><th>w≤125</th><th>125<w≤250< th=""><th>250<w≤600< th=""></w≤600<></th></w≤250<></th></w≤2100<>	w≤125	125 <w≤250< th=""><th>250<w≤600< th=""></w≤600<></th></w≤250<>	250 <w≤600< th=""></w≤600<>
		t	<	1.00	-0 +0.5	-0 +0.50	-0 +0.7	-0 +1.5	-0 +2.0	-0 +0.3	-0 +0.3	-0 +0.6
1.00	≤	t	<	1.50	-0 +0.7	-0 +0.70	-0 +1.0	-0 +1.5	-0 +2.0	-0 +0.4	-0 +0.5	-0 +0.7
1.50	≤	t	<	2.50	-0 +1.0	-0 +1.00	-0 +1.2	-0 +2.0	-0 +2.5	-0 +0.6	-0 +0.7	-0 +0.9
2.50	≤	t	<	3.50	-0 +1.2	-0 +1.2	-0 +1.5	-0 +3.0	-0 +3.0	-0 +0.8	-0 +0.9	-0 +1.0

Table 2 – Dimensional Tolerances EN9445-2										
Tolerances of Length for sheets from Wide Strips										
		ı	Nomi	nal Lengi	h L Regular Tolerance (mm)	Special Tolerance (mm)				
		L ≤ 2	2000		-0 +5	-0 +3				
		2000) < L		-0 +0.0025 L	-0 +0.0015 L				
					Tolerances of Edge Camber for products deriving fro					
N	lomin	nal W	idth	w	Tolerances for size	V , /				
				-	1000	2000				
10	≤	W	<	40	2.5	10				
40	≤	W	<	125	2	8				
125	≤	W	<	600	1.5	6				
600	≤	W	<	2100	1	4				
					Tolerances of Squareness of sheets from Wi					
	Le	ngth	ı L		Maximum difference on di	agonal lengths (mm)				
		L	≤	3000	6					
3000	<	L	≤	6000	10					
		L	>	6000	15					
					Tolerances of Flatness for Flat Product					
					Wave Height h / Wave Length L ≤ 0,03 (for all thic	cknesses)				
					Tolerances of Edge Displacement for Coils (ea	ach side)				
	Trimr	ned I	Edge	S	35mm	1				
U	Jntrim	ımed	Edge	es	70mm	l				