

DOP – DICHIARAZIONE DI PRESTAZIONE N° 1.0117

DICHIARAZIONE DI PRESTAZIONE N°1.0117

1. Codice di identificazione unico del prodotto-tipo: 1.0117

2. Numero di tipo: **\$235J2**

3. Uso previsto del prodotto da costruzione, conformemente a EN 10025-1:2004

PRODOTTI LAMINATI A CALDO DI ACCIAIO PER IMPIEGHI STRUTTURALI DA UTILIZZARSI NELLE STRUTTURE METALLICHE O IN COMPOSITI METALLICI E STRUTTURE IN CALCESTRUZZO

4. Nome e indirizzo del fabbricante:

MARCEGAGLIA PALINI E BERTOLI S.P.A.

Sede legale - Via Bresciani, 16 – 46040 Gazoldo degli Ippoliti (MN) nello stabilimento di

Via E. Fermi, 28 – 33058 San Giorgio di Nogaro (UD)

- 6. Sistema di valutazione e verifica della costanza della prestazione del prodotto da costruzione: 2+
- 7. L'organismo notificato:

RINA Services S.p.A. N° 0474

Ha rilasciato il certificato di conformità del controllo della produzione in fabbrica fondandosi sui seguenti elementi: i.Ispezione iniziale della fabbrica e del controllo della produzione in fabbrica;

ii. Esegue la sorveglianza continua, la valutazione e l'approvazione del controllo della produzione in fabbrica.

8. Nel caso di una dichiarazione di prestazione relativa ad un prodotto da costruzione per il quale è stata rilasciata una valutazione tecnica europea: **N.A.**

9. Prestazione dichiarata:

Caratteristiche essenziali	Punti relativi ai requisiti della presente (o altra) norma europea	Prestazione	Specifica armonizzata	
Tolleranza sulle dimensioni e tolleranze di forma	7.7.1	EN10029-2010		
Allungamento	7.3.1		016	
Resistenza alla trazione	7.3.1	CONFORME TABELLA 1	-2:2019	
Carico unitario di snervamento	7.3.1	CONFORME TABELLA I		
Resilienza	7.3.1+7.3.2		10025	
Analisi chimica	7.2.1	CONFORME TABELLA 2	R Z	
Saldabilità (composizione chimica)	7.2+7.4.1	NPD		
Durabilità (composizione chimica)	7.2+7.4.3	NPD		

10. La prestazione del prodotto di cui ai punti 1 e 2 è conforme alla prestazione dichiarata di cui al punto 9. Si rilascia la presente dichiarazione di prestazione sotto la responsabilità esclusiva del fabbricante di cui al punto 4.

In nome e per conto della MARCEGAGLIA PALINI E BERTOLI S.P.A. San Giorgio di Nogaro, 10 marzo 2021

DOP – DICHIARAZIONE DI PRESTAZIONE N° 1.0117

> TABELLA 1- CARATTERISTICHE IN ACCORDO ALLA EN 10025-2:2019

CARATTERISTICHE MECCANICHE A TEMPERATURA AMBIENTE - prospetto 6														
In confo	Carico unitario minimo di snervamento ReH in N/mm²									RESISTENZA A TRAZIONE RM IN N/MM²				
in come	orinica ana				Spesso	re nomi	nale mr	n				Spessore	e nominal	e
EN 10027-1	EN10027-2	≤16	\$16				≥3 ≤100	>100 ≤150	>150 ≤250	>250 ≤400				
S235J2	1.0117	235	225	215	215	215	195	185	175	165	360÷510	350÷500	340÷490	330÷480

CARATTERISTICHE MECCANICHE A TEMPERATURA AMBIENTE – prospetto 6												
In conformità alla		Posizione	Allungamento percentuale minimo dopo rottura A%									
I district the state of the sta					L ₀ =5,0	$65*\sqrt{S_0}$						
EN 10027-1	EN10027-2		≥3≤40	>40≤63	>63≤100	>100≤150	>150≤250	>250≤400				
C22E12	1.0117	I	26	25	24	22	21	21				
S235J2 1.0117	1.0117	t	24	23	22	22	21	21				

Caratteristiche meccaniche – Resilienza KV₂ longitudinale per prodotti piani e lunghi – prospetto 8									
In confo	rmità alla	TEMPERATURE	Energia minima (J) – Spessore nominale in mm						
EN 10027-1	EN10027-2	°C	≤150	>150≤250	>250≤400				
S235J2 1.0117		1.0117 -20		27	27				

> TABELLA 2 - CARATTERISTICHE IN ACCORDO ALLA EN 10025-2:2019

	COMPOSIZIONE CHIMICA ALL'ANALISI DI COLATA - prospetto 1											
In confo	mità alla	Metodo di		6 max per s Ili di prodo		Si	Mn	Р	S	N	Cu	altro
EN 10027-1	EN10027-2	deossidazione	≤16	>16≤40	>40	max.	max.	max.	max.	max.	max.	max
S235J2	1.0117	FF	0,17	0,17	0,17	-	1,40	0,025	0,025	-	0,55	-

Valore massimo del CEV basato sull'analisi di colata - prospetto 5										
In confo	ormità alla	Metodo di	Valore massimo CEV in % per spessori nominali di prodotto in mm							
EN 10027-1	EN10027-2	deossidazione	≤30	>30≤40	>40≤150	>150≤250	>250≤400			
S235J2	1.0117	FF	0,35	0,35	0,38	0,40	0,40			